38 research outputs found

    Within-burst synchrony changes for coupled elliptic bursters

    Get PDF
    We study the appearance of a novel phenomenon for linearly coupled identical bursters: synchronized bursts where there are changes of spike synchrony within each burst. The examples we study are for normal form elliptic bursters where there is a periodic slow passage through a Bautin (codimension two degenerate Andronov-Hopf) bifurcation. This burster has a subcritical Andronov-Hopf bifurcation at the onset of repetitive spiking while end of burst occurs via a fold limit cycle bifurcation. We study synchronization behavior of two and three Bautin-type elliptic bursters for a linear direct coupling scheme. Burst synchronization is known to be prevalent behavior among such coupled bursters, while spike synchronization is more dependent on the details of the coupling. We note that higher order terms in the normal form that do not affect the behavior of a single burster can be responsible for changes in synchrony pattern; more precisely, we find within-burst synchrony changes associated with a turning point in the spiking frequency.Comment: 17 pages, 13 figures, 2 table

    Nonlinear synchrony dynamics of neuronal bursters

    Get PDF
    We study the appearance of a novel phenomenon for coupled identical bursters: synchronized bursts where there are changes of spike synchrony within each burst. The examples we study are for normal form elliptic bursters where there is a periodic slow passage through a Bautin (codimension two degenerate Andronov-Hopf) bifurcation. This burster has a subcritical Andronov-Hopf bifurcation at the onset of repetitive spiking while the end of burst occurs via a fold limit cycle bifurcation. We study synchronization behavior of two Bautin-type elliptic bursters for a linear direct coupling scheme as well as demonstrating its presence in an approximation of gap-junction and synaptic coupling. We also find similar behaviour in system consisted of three and four Bautin-type elliptic bursters. We note that higher order terms in the normal form that do not affect the behavior of a single burster can be responsible for changes in synchrony pattern; more precisely, we find within-burst synchrony changes associated with a turning point in the spontaneous spiking frequency (frequency transition). We also find multiple synchrony changes in similar system by incorporating multiple frequency transitions. To explain the phenomenon we considered a burst-synchronized constrained model and a bifurcation analysis of the this reduced model shows the existence of the observed within-burst synchrony states. Within-burst synchrony change is also found in the system of mutually delaycoupled two Bautin-type elliptic bursters with a constant delay. The similar phenomenon is shown to exist in the mutually-coupled conductance-based Morris-Lecar neuronal system with an additional slow variable generating elliptic bursting. We also find within-burst synchrony change in linearly coupled FitzHugh-Rinzel 2 3 elliptic bursting system where the synchrony change occurs via a period doubling bifurcation. A bifurcation analysis of a burst-synchronized constrained system identifies the periodic doubling bifurcation in this case. We show emergence of spontaneous burst synchrony cluster in the system of three Hindmarsh-Rose square-wave bursters with nonlinear coupling. The system is found to change between the available cluster states depending on the stimulus. Lyapunov exponents of the burst synchrony states are computed from the corresponding variational system to probe the stability of the states. Numerical simulation also shows existence of burst synchrony cluster in the larger network of such system.Exeter Research Scholarship

    Natural language description of images using hybrid recurrent neural network

    Get PDF
    We presented a learning model that generated natural language description of images. The model utilized the connections between natural language and visual data by produced text line based contents from a given image. Our Hybrid Recurrent Neural Network model is based on the intricacies of Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), and Bi-directional Recurrent Neural Network (BRNN) models. We conducted experiments on three benchmark datasets, e.g., Flickr8K, Flickr30K, and MS COCO. Our hybrid model utilized LSTM model to encode text line or sentences independent of the object location and BRNN for word representation, this reduced the computational complexities without compromising the accuracy of the descriptor. The model produced better accuracy in retrieving natural language based description on the dataset

    Hybrid deep neural network for Bangla automated image descriptor

    Get PDF
    Automated image to text generation is a computationally challenging computer vision task which requires sufficient comprehension of both syntactic and semantic meaning of an image to generate a meaningful description. Until recent times, it has been studied to a limited scope due to the lack of visual-descriptor dataset and functional models to capture intrinsic complexities involving features of an image. In this study, a novel dataset was constructed by generating Bangla textual descriptor from visual input, called Bangla Natural Language Image to Text (BNLIT), incorporating 100 classes with annotation. A deep neural network-based image captioning model was proposed to generate image description. The model employs Convolutional Neural Network (CNN) to classify the whole dataset, while Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) capture the sequential semantic representation of text-based sentences and generate pertinent description based on the modular complexities of an image. When tested on the new dataset, the model accomplishes significant enhancement of centrality execution for image semantic recovery assignment. For the experiment of that task, we implemented a hybrid image captioning model, which achieved a remarkable result for a new self-made dataset, and that task was new for the Bangladesh perspective. In brief, the model provided benchmark precision in the characteristic Bangla syntax reconstruction and comprehensive numerical analysis of the model execution results on the dataset

    Mapping the integrated marketing communications research: A bibliometric analysis

    Get PDF
    Given the growing popularity of integrated marketing communications (IMC) among academicians and businessmen, this study examines the trends of theoretical development in IMC during 1991-2020 by using a comprehensive bibliometric analysis of 303 academic research papers. In addition to examining the citation and publication structures in terms of authors, institutions, countries, and sources, this study explores the publications and citations trends and identifies conceptual and intellectual structure of IMC literature. The results demonstrate that IMC literature follows a steady but slow growth rate, although average citations per document are high. Kitchen, PJ. (author), Northwestern University (institution), USA (country), and Journal of Marketing Communications (source) contributed the most to IMC literature. With 216 multi-authored documents, IMC can be recognized as a field of high research collaboration. About 84% of the keywords appeared only once in IMC literature. In addition, the foundation of IMC rests on a small number of articles by a few researchers published in handful number of journals. Finally, the keyword co-occurrence network analysis identifies different clusters of IMC research, of which clusters marked with the keywords (1) brand equity, (2) measurement, (3) IMC and consumer empowerment represent the highest research potential

    Impact of Brand Image and Brand Loyalty in Measuring Brand Equity of Islami Bank Bangladesh Ltd.

    Get PDF
    This paper aims at investigating the interrelation between brand image and brand loyalty in case of measuring brand equity of Islami Bank Bangladesh Ltd. Brand Image (BI) and Brand Loyalty (BL) have been considered as the most attributing features of Brand Equity. Handful of researches have resulted these two as primary factor (Latent Variable) of Brand Equity. With this association, this study is designed at conducting research for explaining intermediating role of BI and BL over Brand equity of Islami Bank Bangladesh Limited (IBBL) using Structured Equation Modeling (SEM). Specifically, to analyze the impact of observed variables over un-observed variable e.g. BI and BL we have used Confirmatory Factor Analysis. Only primary data was used for the study which was collected through structured questionnaire from a total number of 399 customers’ located in 43 branches of IBBL within Dhaka city. Simple Random Selection (SRS) was followed for sampling design. Findings of the study show that a positive correlation exists between BI and BL for IBBL. Moreover, strong influence of Brand Loyalty over Brand Equity was found that of Brand Image in case of IBBL. The model fit of the study strongly signify the result as successful estimate of the model

    A deep learning approach for brain tumor detection using magnetic resonance imaging

    Get PDF
    The growth of abnormal cells in the brain’s tissue causes brain tumors. Brain tumors are considered one of the most dangerous disorders in children and adults. It develops quickly, and the patient’s survival prospects are slim if not appropriately treated. Proper treatment planning and precise diagnoses are essential to improving a patient’s life expectancy. Brain tumors are mainly diagnosed using magnetic resonance imaging (MRI). As part of a convolution neural network (CNN)-based illustration, an architecture containing five convolution layers, five max-pooling layers, a Flatten layer, and two dense layers has been proposed for detecting brain tumors from MRI images. The proposed model includes an automatic feature extractor, modified hidden layer architecture, and activation function. Several test cases were performed, and the proposed model achieved 98.6% accuracy and 97.8% precision score with a low cross-entropy rate. Compared with other approaches such as adjacent feature propagation network (AFPNet), mask region-based CNN (mask RCNN), YOLOv5, and Fourier CNN (FCNN), the proposed model has performed better in detecting brain tumors

    A developmental approach to predicting neuronal connectivity from small biological datasets: a gradient-based neuron growth model.

    Get PDF
    PMCID: PMC3931784 Open Access article: BB/G006652/1 and BB/G006369/1.Relating structure and function of neuronal circuits is a challenging problem. It requires demonstrating how dynamical patterns of spiking activity lead to functions like cognitive behaviour and identifying the neurons and connections that lead to appropriate activity of a circuit. We apply a "developmental approach" to define the connectome of a simple nervous system, where connections between neurons are not prescribed but appear as a result of neuron growth. A gradient based mathematical model of two-dimensional axon growth from rows of undifferentiated neurons is derived for the different types of neurons in the brainstem and spinal cord of young tadpoles of the frog Xenopus. Model parameters define a two-dimensional CNS growth environment with three gradient cues and the specific responsiveness of the axons of each neuron type to these cues. The model is described by a nonlinear system of three difference equations; it includes a random variable, and takes specific neuron characteristics into account. Anatomical measurements are first used to position cell bodies in rows and define axon origins. Then a generalization procedure allows information on the axons of individual neurons from small anatomical datasets to be used to generate larger artificial datasets. To specify parameters in the axon growth model we use a stochastic optimization procedure, derive a cost function and find the optimal parameters for each type of neuron. Our biologically realistic model of axon growth starts from axon outgrowth from the cell body and generates multiple axons for each different neuron type with statistical properties matching those of real axons. We illustrate how the axon growth model works for neurons with axons which grow to the same and the opposite side of the CNS. We then show how, by adding a simple specification for dendrite morphology, our model "developmental approach" allows us to generate biologically-realistic connectomes
    corecore